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By examining the concept of energy exchange among the orthogonally polarized components of each of two
colliding (Manakov-like) vector solitons it is observed that a maximum or an efficient energy-exchange process
is possible only for an appropriate choice of the initial physical parameters(namely, frequency separation,
polarizations, time delay, and pulse-width separation between the colliding solitons) for which LW (walk-off
length) @LNL (nonlinear length). However, in this case only, the amount of energy-exchange can be consider-
ably increased or decreased by appropriately changing the phases of colliding solitons without altering the
walk-off length and the initial energy distributions between the soliton components. Moreover we observe that
during the collision between two closely placed vector solitons of the practically interesting integrable Mana-
kov model, nonuniform pulse broadening takes place in each of their components. Such an effect has not yet
been reported in anys1+1d dimensional integrable soliton systems so far. In addition, the relation between
walk-off length, polarization, and pulse width is briefly discussed.
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I. INTRODUCTION

Zakharov and Shabat[1] developed the inverse scattering
theory (IST) to integrate the nonlinear Schrödinger(NLS)
equation which appeared later as a mathematical model to
govern the dynamics of optical scalar solitons in an ideal
single-mode fiber[2,3]. But in reality, the simplest model is
a two-component pulse in a waveguide that supports pulses
along two orthogonal polarizations as a result of birefrin-
gence effects. Therefore by coupling two NLS equations
through cubic nonlinearities, the two-component vector-
soliton system was first suggested and solved using the IST
by Manakov[4]. The extension of this study to the general
integrableN-component case is straightforward[5]. Such
coupled equations having a coupling term that is function of
the sum of the all field intensities were systematically de-
rived in nonlinear optics field[6–16] to explain certain con-
cepts as pointed out below.

Recently the Manakov vector-soliton received renewed
attraction because it was observed experimentally in single-
mode fiber[6], planar waveguide[7], and photorefractives
[8]. However, theoretically, vector soliton was realized more
than a decade ago in the single-mode fiber through the self-
trapping phenomenon as reviewed in Ref.[9]. In addition,
very recently ideal Manakov spatial solitons in quadratic me-
dia was observed via cascading optical rectification and the
electro-optic effect[10].

One of the most exciting phenomena associated with the
vector-solitons is their collision. Manakov carried out one of
the pioneering studies[4] on the collisions between vector-
soliton pulses asymptotically in different polarization states
and obtained an exact expression for the change in polariza-
tion state of the colliding pulses. Later on it was shown that

the pulse evolution in optical fibers with randomly and rap-
idly varying birefringence can be described by the Manakov
equation[11]. Further Menyuk[12] derived the Manakov
equation to govern pulse propagation when the value of the
ellipticity angle of the birefringent fiber is 35 °. In this case
he also claimed that a soliton of one polarization, when in-
teracting with a switching pulse of the other polarization,
does not develop shadow or daughter wave(transfer of en-
ergy from one polarization axis to the other due to collision).
But Radhakrishnanet al. [13] proved by studying the vector-
soliton collision through the general two-soliton solution of
the Manakov model that there is an energy exchange be-
tween the polarization components of each colliding vector
soliton. Based on this study, Jakubowski, Steiglitz, and
Squier, and later Steiglitz, mentioned in Ref.[14] that such
types of collisions besides being fundamentally interesting
have also opened the exciting possibility of soliton applica-
tions to the implementation of all-optical logic in a way that
does not require fabrication of individual gates[14]. Further
Anastassiou et al. [15] observed such strong energy-
exchange collisions experimentally. In addition, recent re-
sults [16] have demonstrated the possibility of using vector-
solitons in Bose-Einstein condensates media to perform
quantum information processing. Moreover the studies of
polarization changes due to collision between the vector-
solitons of Manakov model[13–18] have important conse-
quences in soliton transmission systems that use polarization
division multiplexing(PDM) [19,20]. In a PDM system, ad-
jacent solitons are launched along orthogonal polarizations.
This technique can double the transmission rate as shown in
Ref. [16], experimentally. By analyzing orthogonal-soliton
interactions in the Manakov system, the benefit of the PDM
technique was analytically demonstrated in Ref.[17].

Therefore by considering the importance of vector-soliton
collisions supported by the Manakov model in different as-
pects, in this paper, we like to investigate how the efficiency
of energy-exchange processes varies with respect to initial
parameters such as frequency, polarization, pulse width,
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phase and time delay of the colliding vector-solitons in Secs.
II and III. Indeed, in the earlier studies, Manakov[4] noted
that the polarization changes during vector-soliton collisions
and Radhakrishnanet al. [13] observed an energy-exchange
between the polarization components of each vector solitons,
provided that the unit polarization vectors of the colliding
solitons are neither parallel nor orthogonal. The main objec-
tive of the present study is to determine under what condi-
tions the maximum amount of energy is transferred from one
component to the other. The obtained condition exhibits the
interesting relation between the polarization and walk-off
length.

II. MANAKOV EQUATION

Manakov equation can be written as

i
] um
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]2um

]2t
+ gsuumu2 + uu3−mu2dum = 0,m= 1,2, s1d

whereu1sz,td andu2sz,td are the two orthogonally polarized
components of the slowly varying envelope pulseu
=su1,u2dT, z andt are, respectively, the distance and time,b2

is the group-velocity dispersion parameter, andg is the fiber
nonlinearity. Throughout the present paper, to make the pre-
sentation clear, the time is expressed in units of picoseconds
spsd, the distance in kilometersskmd, and the amplitudes
of the soliton componentsu1 and u2 in ÎWatt.

In order to investigate the vector-soliton collision, we
want to consider the sum of two different vector one solitons
S1 and S2 supported by the Manakov model, namely, atz
=0 as

usSjd = CsSjdÎP0
sSjdexpsihI

sSjddsechshR
sSjdd, j = 1,2, s2d

where hR
sSjd=As jdst+ t0

s jdd, hI
sSjd=vs jdt+h0

s jd, and CsSjd

=fcossus jddexpsif1
s jdd sinsus jddexpsif2

s jdd gT is the Jones vec-
tor, in which the superfixj represents vector solitonSj
while suffixes 1 and 2 define componentsu1 andu2 of the
vector solitonSj, P0

sSjd is the initial peak power of soliton
Sj, d0

s jd=1/As jd is the half-width at1.145/e of the peak
power of solitonSj components,nt= t0

s2d− t0
s1d is the initial

time delay or the central position difference between the
two solitons,Df =svs2d−vs1dd /2p is the initial frequency
separation between the solitons. The Jones vectorCsSjd

contains all the informations about the polarization state
of the solitonSj, where u s jd is the azimuthal angle,f2

s jd

−f1
s jd is the initial phase difference between the two com-

ponents of solitonSj, and h0
s jd is the arbitrary in-phase

constant of solitonSj. Manakovf4g noted asymptotically
that during vector-soliton collision, except the position
shift all other physical parameterssnamely, pulse-width,
velocity, polarization, and frequencyd are not affected pro-
vided their initial polarizations are parallelsCs1d iCs2d, i.e.,
us1d=us2d and uf2

s jd−f1
s jdu=0 or pd or orthogonalsCs1d'Cs2d,

i.e., uus2d−us1du=p /2d. Otherwise in addition to the position
shift, the associated Jones vectorsCsSjd do change without
disturbing other parameters. Here the value of position
shift depends on their initial polarizationsf13,21g.

III. NUMERICAL RESULTS AND DISCUSSIONS

The Manakov equation(1) is a nonlinear partial differen-
tial equation that does not generally admit analytic solutions
except for some specific cases such as those mentioned in
Sec. II. For all other cases, numerical solution of Eq.(1) is
therefore needed to obtain the dynamical behavior of the
vector soliton. Throughout the present work we have solved
Eq. (1) by means of the split-step Fourier method[9].
Whereas dispersion and nonlinearity act together along the
fiber, the split-step Fourier method assumes an approximate
(but highly accurate) solution, in which propagation fromz
to z+dz is carried out in two steps. In the first step, the
nonlinearity acts alone whereas in the second step the disper-
sion acts alone. Mathematically, the evolution of the soliton
field, sayuj, is given by

ujsz+ dz,td = expsdzD̃dexpsdzÑdujsz,td,

whereD̃ and Ñ are differential operators that correspond to
dispersion and nonlinearity effects, respectively. For suffi-
ciently smalldz, this method leads to a highly accurate so-
lution for almost all standard pulse-propagation equations.

A. Influence of the initial frequency separation

We will first see below how the process of energy-
exchange among the components of each colliding vector-
soliton (as noted by deriving the most general two-soliton
solution of Eq.(1) in Ref. [13] ) is affected with respect to
the initial frequency separationDf. For this purpose we se-
lect the two vector one-solitons of the form(2) having equal
pulse width value of 5 ps and equal peak power of 0.2 W.
By restricting the azimuthal angle of the two solitons to the
value of 45°, the power is equally distributed in each com-
ponent of the colliding solitonsS1 and S2. But the initial
phase difference for solitonS1 is 0 andp (i.e., heref2

s1d

=f1
s1d=f1

s2d=0 andf2
s2d is other than 0 andp). Through this

choice we select the initial Jones vectorsCs1d andCs2d of the
colliding solitons to be neither parallel nor orthogonal so that
the energy exchange is possible due to the collision. Here we
takeb2=−20 ps2 km−1, and the value ofg=4 W−1km−1 fol-
lows from the condition of soliton period[9]. Further,
through this study the initial time-delaysDtd or the central
position difference betweenS1 and S2 is 56 ps. This is
achieved, for example, by placingS1 at t=28 ps andS2 at t
=−28 ps. With such temporal positions, the dynamics ofS1
andS2 before and after collision appears equally on the both
side oft=0, as shown in Fig. 4. Therefore during the numeri-
cal simulation, the powers and energies ofS1 and S2 (com-
ponents wise) can be calculated exactly outside the collision
region, by separatingS1 andS2 with respect tot=0 at differ-
ent z. Such symmetric timefiller proposed for this study is
needed because ourDf range introduces spectral overlap as
explained below. In addition, it is worth noting that depend-
ing on the precollision parameters the collision of two vector
solitons of the form(2) may be attractive or repulsive, and/
or, elastic or inelastic[13]. So, after a given collision, irre-
spective of the precise nature of the collision, we hereafter
simply designate the component of solitonS1 sS2d which has
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gained energy asumax
s1d sumax

s2d d. Similarly we designate the
component of solitonS1 (S2) which has lost energy asumin

s1d

sumin
s2d d.
We start our discussion by raising the fundamental ques-

tion that for a givenDf value, how sensitive is the energy-
exchange process with respect to the initial polarizations of
colliding solitons. To answer this question we have examined
the energy ratioEout/Ein between the energies of each com-
ponent of the two solitons aftersEoutd and beforesEind the
collision, as a function off2

s2d−f1
s2d, for different values of

Df. In Fig. 1, for the different consideredDf values, the
amount of energy transfer from one component to the other
component of the colliding solitons is recorded at different
initial phase differences ofS2 without modifying the other
parameters defined above. Here we note the Manakov’s ob-
servations[4] that there is no energy switching whenus1d

=us2d=u=45°, andf2
s2d−f1

s2d=180° (because, for this choice
Cs1d iCs2d). We also observe in Fig. 1 that by increasing the
value of f2

s2d−f1
s2d from 0° to 180°, the efficiency of the

energy transfer from one component to the other increases
very slowly and reaches its maximum value in a different
part of thef2

s2d−f1
s2d range(depending on a givenDf value)

and then decreases. In addition, one can note that this varia-
tion is not uniform for all givenDf values. That is, if the
given Df value is very small(say here,Df ø0.005 THz) the
maximum efficiency will appear suddenly at a particular
value(very close to 180°), otherwise(whenDf .0.005 THz)
the efficiency will increase gradually and stand almost very
close to its maximum value for a small range off2

s2d−f1
s2d

variation. This range is broad for a largeDf value, namely,

Df @0.005 THz. Further, one can observe that the value of
f2

s2d−f1
s2d giving the maximum switching efficiency depends

strongly on the value ofDf. That is, eachDf value has dif-
ferent maximum possible switching efficiency at different
f2

s2d−f1
s2d. For the such observedf2

s2d−f1
s2d values at the dif-

ferent Df values, Fig. 2 gives the values of energy of each
component of the two vector solitons at the different fiber
lengths. In general, as Fig. 2 shows, the energies of vector
solitonsS1 andS2 recorded at different fiber lengths clearly
reflect that before the collisionS1 and S2 are having equal
energy distribution in their respective components. But after
the collision, one of the components of each soliton gains
energy from the other component. In our situation, when the
gain appeas in one component ofS1 then the corresponding
component inS2 faces loss. For example, we see in Fig. 2,
whenDf =0.1 THz, that the maximum possible switching ef-
ficiencys53.5%d occurs forf2

s2d−f1
s2d=100°. In this case the

switching is partial or inefficient. This inefficiency increases
if we increase theDf value further. But our aim is to obtain
the condition for high switching efficiency. This is achieved
only by decreasing theDf value. WhenDf decreases the
switching efficiency increases systematically as shown in
Figs. 1 and 2. WhenDf becomes sufficiently small the maxi-
mum efficiency appears at a certain critical value off2

s2d

−f1
s2d (for an example whenDf =0.005 THz, 99.1% is

achieved atf2
s2d−f1

s2d=172° as shown in Figs. 1 and 2. This
optimum value is very close to 180° whereCs1d iCs2d. Thus,
the maximum switching efficiency appears very close to the
situation where there is no switching. Here a fundamental
question arises as to whether or not there is a discontinuity or

FIG. 1. Initial phase difference between the components ofS2 (or the state of polarization ofS2) is varied against the output and input
energy ratio by fixing the initial phase difference ofS1 as 0° andu=45° at differentDf values. HereDt=56 ps.
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sharp jumping between the switching and nonswitching para-
metric region. In order to answer this question, we have de-
creased theDf value from 0.4 THz to 0.0005 THz and ob-
tained 99.8% efficiency atf2

s2d−f1
s2d=179° as shown in Fig.

3. If Df is decreased further,f2
s2d−f1

s2d will move very close
to 180° and there, the switching efficiency will jump into the
situation(f2

s2d−f1
s2d=180°, i.e.,Cs1d iCs2d) where there is no

switching. It is worth noting that whenDf is small then there
is an overlap between the frequency spectrum ofS1 andS2.

B. Relation between polarization and walk-off length

The reason for the above energy-exchange process can be
explained phenomenologically by using the approximate re-

FIG. 3. Plot showing that the maximum efficiency appears very close to the situation where there is no switching. Thus there is an
interesting jumping phenomenon or discontinuity between the switchings179 °d and nonswitchings180 °d region.

FIG. 2. The maximum possible switching efficiency at differentDf values is obtained by changing the initial phase difference ofS2 to
a particular value HereDt=56 ps,u=45°, andf2

s1d−f1
s1d=0°.
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lation for walk-off length (during which two overlapping
pulses separate from each other), LW<d0/ s2pub2uDfd, where
d0=sd0

s1d+d0
s2dd /2 is the average value of width of the two

solitons. This relation gives the conditionDf =1/2pd0, if the
nonlinear length[LNL=1/gP0, in which P0=sP0

s1d+P0
s2dd /2 is

the average power of the two solitons], the dispersion length
sLD=d0

2/ ub2ud, andLW are equal. In the present study, we take
d0=5 ps, which imposesDf =0.0318 THz under the condi-
tion LW=LD=LNL=1.25 km. From Figs. 1 and 2 it is obvious
that, if Df =0.0318 THz, 89% efficiency is possible. This ef-
ficiency decreases ifLW,LNL, and becomes decreasingly
small forLW!LNL. Thus, we have found that, to increase the
switching efficiency appearing atLW=LD=LNL to the highest
values<100%d, one must choose the precollision parameters
in such a way that

LW @ LD = LNL. s3d

The simplest way to increaseLW without changingLD and
LNL is to decreaseDf. Thus, for sufficiently smallDf, then
LW@LNL, and there, the soliton interaction resulting from the
collision process becomes slow. This slow interaction gives
enough time for the nonlinear effects to play a significant
role during the collision process, thus creating the maximum
switching efficiency. However in the extreme case, when
LW→`, which corresponds toDf =0, there is no energy-
exchange collision due to the fact that the two solitons hav-
ing the same frequency value do not collide. Also it is worth
noting that in the particular caseDf =0 andDt=0 snot rep-
resented in the figuresd, a peak-power fluctuation occurs dur-
ing the soliton propagation. Indeed, whenS1 and S2 are
launched from the same temporal window without any fre-
quency mismatch,S1 and S2 influences each other through-
out the propagation. Thus, our results in Figs. 1 and 2 dem-
onstrate that an appropriate choice of walk-off length is
needed to get the maximum efficient energy exchange due to
the Manakov vector-soliton collision. In addition, it is inter-

esting to note that the role of the polarization ofS1 and S2
also depends onLW. That is, whenLW@LNL, the polarization
of each colliding soliton becomes sensitive and can be tuned
to the optimum value to get the maximum energy exchange
as shown in Fig. 1, whereas the role of polarization is not
significant at all whenLW@LNL. For the intermediate values
of LW si.e., LW,LNL or the order ofLNLd the range of the
initial phase difference of any one of the colliding solitons
sover which the maximum possible switching efficiency ap-
pearsd is not critical. From Fig. 1 one can see that this width
is narrow if LW.LNL and broad ifLW,LNL. Thus, here we
conclude that for a givenLW value, by simply tuning the
phase of any one of the two colliding solitons or the state of
polarization, one can substantially enhance the switching ef-
ficiency. But this tuning leads to 100%efficiency only if
LW@LNL.

In other way, by decreasing the temporal pulse width of
the colliding solitons for any givenDf value, one can also
explain the above noted concepts. That is, an efficient energy
switching starts when the pulse width is tuned to a certain
optimum value for whichLW@LNL. In addition, we verified
that all the above results can also be obtained by choosing
appropriate values for the 12 arbitrary parameters in the ex-
act more general two-soliton solution of Eq.(1) derived by
Radhakrishnanet al. in Ref. [13]. Hence the efficiency of
energy switching depends not only on the initial frequencies
and but also on the pulse widths of colliding solitons as
shown by the relation forLW.

By considering theDf =0.005 THz case(where the 99.1%
switching efficiency appears) we have represented the colli-
sion dynamics for different initial polarizations ofS1 andS2,
in Fig. 4. It is very interesting to note that the change of
polarization does not affect the walk-off length, but increases
the switching efficiency. Further, the complete energy
switching is observed simultaneously in the two colliding
vector solitons when the initial state of polarizations ofS1

andS2 corresponds tof2
s1d−f1

s1d=0, f2
s2d−f1

s2d=172°. In ear-
lier studies[13,14,21], one soliton is used to stimulate com-

FIG. 4. Intensity plots showing the collision dynamics at different polarizations ofS2 with f2
s1d−f1

s1d=0° andu=45°. Note that the
collision appears at different fiber lengths and produced different position shifts. HereDt=56 ps andDf =0.005 THz.
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plete switching in the other soliton by collision. Let us com-
pare the collision dynamics forf2

s2d−f1
s2d=0 andf2

s2d−f1
s2d

=180° as shown in Fig. 4. In these two cases there is no
energy transfer but the collision dynamics looks attractive in
the former case and repulsive in the latter case. Throughout
this study, by just varying the phase ofS2, we have observed
an important efficient energy switching. The same behavior
can be observed by varying the polarization angle. In such a
case, the initial energy distributions among the soliton com-
ponents would not be the same. Anyhow, whatever be the
initial energy distribution, the soliton’s power[defined in Eq.
(2)] can be scaled to any desired value without affecting the
given properties and any of the other parameters associated
with vector solitons. The present study can also be tailored to
any given parametric choice. The allotted values for the ar-
bitrary parameters have been chosen just as an example of
parameter set.

C. Influence of the initial time delay

We now consider the behavior of the energy switching
with respect to the initial time delayDt. For this purpose we
consider the caseDf =0.2 THz, where the frequency spectra
of the colliding solitons are clearly separated, so that the
energies of the two solitons(component wise) can be easily
evaluated throughout the propagation(including the collision
region) by using a frequency filter. Further, here, we takeS2
as the slow soliton andS1 as the fast soliton by choosing
f1. f2 with Df =0.2 THz(just for convenience). In Fig. 5 the
input and the output energies and peak powers of the collid-
ing solitons at differentDt are compared. Whatever be the
initial time delay between the colliding solitons the sum of
the energy inu1 and that inu2 of each colliding soliton is
always 2 pJ. However, ifuDtu&d0=5 ps, the closely packed
colliding solitons execute partial collision, which truncates

the walk-off length. Due to this partial collision the energy
transfer efficiency decreases as shown in Fig. 5, but solitons
always have their initial energy valueEin=2 pJ. This reflects
the principle of energy conservation as one expects for such
a conservative system for allDt. Beyond a certainDt value,
the fast solitonS1 first appears before the slow one. There-
fore no collision takes place and the initial energy distribu-
tion among the soliton components is maintained as shown
in Fig. 5.

But in Fig. 5 the sum of peak powers in theu1 and u2
components of the colliding solitons are not always equal to
its initial valuePin=0.2 W after the collision ifuDtu&d0. But
in this region, the energy is conserved as explained before. It
reflects that there is a pulse broadening when the peak power
in the components of the each colliding soliton decreases or
there is a pulse compression when the peak power in the
components of each colliding soliton increases. For example,
we have examined the collision behavior when vector soli-
tons are closely packed, as shown in Fig. 6. It clearly shows
that the sum of the peak powers in theu1 andu2 components
of the colliding solitons is less than 0.2 W after collision,
and thus not conserved, whereas the energies of the colliding
solitons are conserved throughout the collision dynamics.
Therefore one can conclude that the colliding solitons expe-
rience pulse broadening after collision. Further one can note
from Figs. 5 and 6 that such a pulse broadening is not uni-
form in the components ofS1 andS2. This shows that if the
vector solitons of the integrable Manakov model are closely
packed and then allowed to collide, nonuniform pulse broad-
ening will take place. It is surprising to observe such a be-
havior in an integrables1+1d dimensional system. In litera-
ture [4,13,14] so far, it was claimed that except the
polarization of colliding Manakov-like vector solitons, there
is no other change in soliton parameters during collision. It is

FIG. 5. Plots showing the energy and peak power gain and loss in the components ofS1 andS2 after they collide at differentDt values.
Here the values for polarization parameters areu=45°, f2

s1d−f1
s1d=0°, andf2

s2d−f1
s2d=90° andLW=0.2 km.
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proved here that this is true only ifLW is not truncated during
the collision dynamics

IV. CONCLUSIONS

In conclusion, we have examined the behavior of energy-
exchange process within vector solitons undergoing colli-
sions in different physical situations. It comes out that an
appropriate choice of soliton parameters is needed to pro-
duce the maximum energy exchange. Such results are par-
ticularly interesting from the practical point of view. Indeed
Manakov solitons are not only mathematical concepts, but
have also been observed in recent experiments[6–8,15]. We
have also observed that by tuning the phase of any one of the
colliding solitons to a certain optimum value one can get
essentially 100% switching efficiency providedLW@LNL.
For LW.LNL, the magnitude of the initial phase difference of
any of the colliding solitons(over which a maximum pos-
sible switching efficiency appears) is not critical but narrow,
while the width is broad ifLW,LNL. However the phase

parameters will not play any significant role in the enhance-
ment of the switching process ifLW!LNL. In addition, for a
given Df, one can vary the switching efficiency without dis-
turbing the walk-off length. Further, the complete energy
switching is observed simultaneously in the two colliding
vector solitons as shown in Fig. 4 whereas one soliton is
used to stimulate complete switching in the other soliton by
collision in Refs.[13,14,21]. Moreover, we have observed
surprising changes in the pulse width ifLW is truncated dur-
ing the collision dynamics governed by the practically inter-
esting integrable Manakov model.
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